UNIVERSITEIT TWENTE.

SMART CITIES UNIVERSITY OF TWENTE

JUNE 2014. MISSION BRAZIL.

OUTLINE

- Grand societal challenges for cities
- Need for smart cities
- University of Twente: society & technology
- Focus on smart and sustainable energy systems
 - Green Energy Initiative
- Smart Grids
- Energy, behavior and society
- Living labs
- Integrated approach for Smart Cities

GRAND SOCIETAL CHALLENGES FOR CITIES

- Cities are facing complex and widespread problems.
- Cities face grand societal challenges such as:
 - Demographic transformations;
 - Resource depletion and climate change;
 - Unequal social participation;
 - Congested transport networks;
 - Difficult trade-offs in land use decisions.

Grand challenges can only be addressed sufficiently if appropriate strategies are applied.

UNIVERSITEIT TWENTE

NEED FOR SMART CITIES

- To use ICT technology to support strategies to cope with grand societal challenges:
 - To improve data exchange on the need and wants for public utilities:
 - E.g. energy, water, waste, and other (public) services;
 - To detect social, environmental, riskful (to health) situations, and to enable public authorities and other organisations to act quick and responsively;
 - To construct smart infrastructures, buildings and offices to support end-users in their growing needs (e.g. comfort, access to internet services).

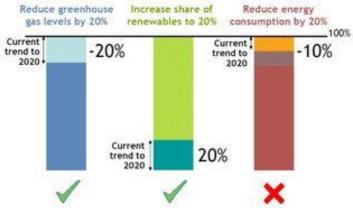
UNIVERSITY OF TWENTE: SOCIETY & TECHNOLOGY

- The Innovative and Research University;
- University for both Technical and Social Sciences;
- Excels in combining beta and gamma disciplinary approaches in research projects on key societal challenges;
- Excellence and innovation through multi-disciplinary collaboration;
 - E.g., on-going research: Smart Grids, Bio-energy;
- University Board identified 'energy' as one of its main strategic subjects – links to Dutch Government Policy.
 - Green Energy Initiative (cross-faculty collaborative to support multi-disciplinary research collaboration).

UNIVERSITEIT TWENTE.

TOWARDS A SMART AND GREEN ENERGY SYSTEM

ENERGY SUPPLY YESTERDAY


Energy Autonomous Smart Microgrids

NEW DEVELOPMENTS

ELEMENTS OF THE ENERGY TRANSITION

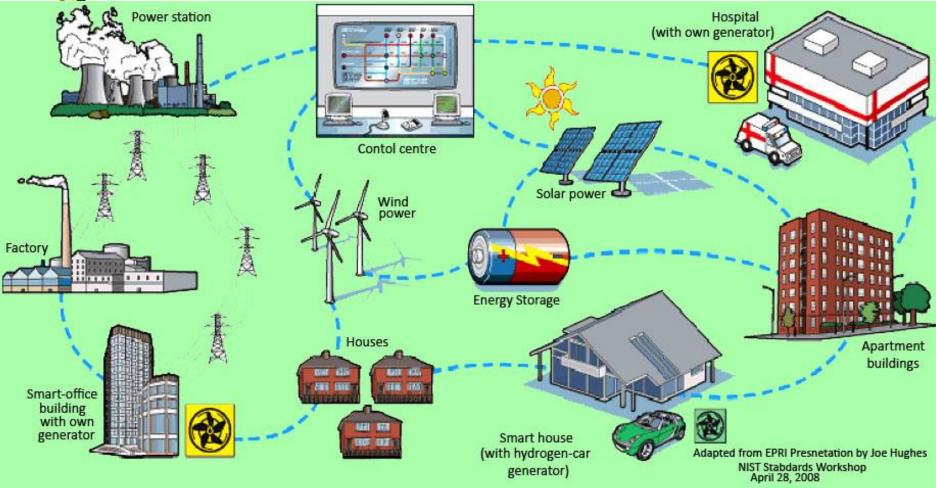
• Non-controlable production

Distributed small scale production

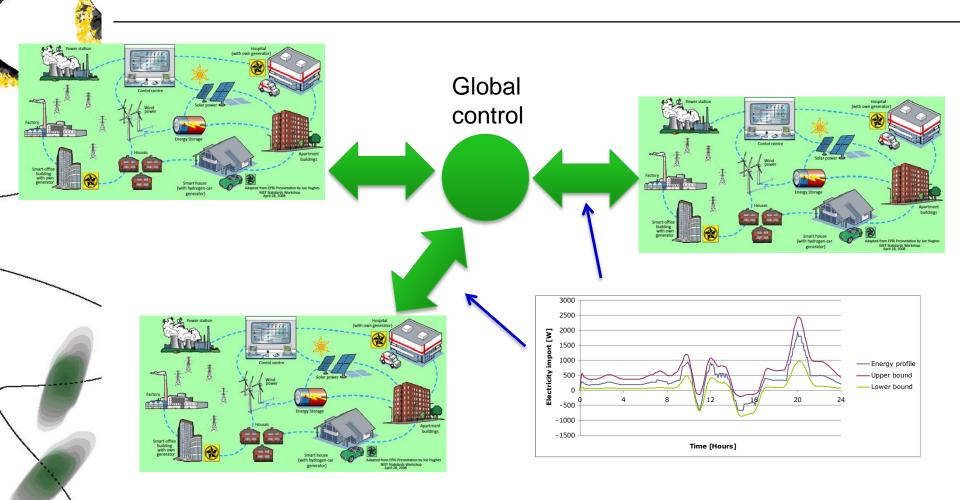
ELEMENTS OF THE ENERGY TRANSITION

NEW POSSIBILITIES

Controlable demand



• Storage

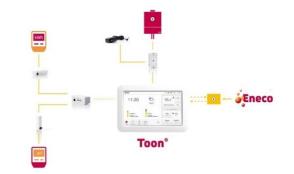


FROM ONE BIG MACRO GRID

TO A COLLECTION OF SMART (AUTONOMOUS) MICRO

SMART GRIDS

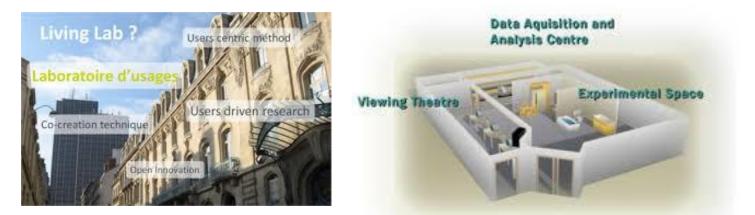
- The smart grid will serve as the information technology backbone that enables widespread penetration of new technologies that today's electrical grid cannot support.
- These new technologies include cutting-edge advancements in *metering, transmission, distribution, and electricity storage technology*, as well as *providing new information and flexibility* to both consumers and providers of electricity.
- Ultimately, access to this information will improve the products and services that are offered to consumers, leading to more efficient consumption and provision of electricity.


ENERGY AUTONOMOUS SMART MICRO GRIDS: ASSUMPTIONS AND CHALLENGES

- However, Smart Grid technology depends on many assumptions:
 - End users have to become responsive to energy pricing (which incentives trigger responsive behavior?);
 - Energy storage at neighborhood level needs to become feasible technologically and economically;
 - Many regulatory changes are needed (e.g., in Electricity Act(s);
 - Financial-economic models need change;
 - Social acceptance of smart technology at household level (privacy issues);
 - Response to Smart Grid developments by large energy sector stakeholders;
 - Need for Smart Grid Innovation agenda.

ENERGY, BEHAVIOR AND SOCIETY

- Innovative green energy innovations do not automatically match the behaviour, rules and routines of persons and organisations in society.
- Insights from behavioural and social scientific disciplines are essential to understand and design implementation of green energy innovations.
- Innovative business- and governance models are needed to manage transitional change to a green energy society.


MULTIDICIPLINARY FOCI

- Behaviour.
- Organisations.
- Economy.
- Business.
- Law.
- Planning.
- Governance.
- Transition studies.
- Multidisciplinary research is not enough; trans- and interdisciplinary research is needed!

LIVING LABS

 Experiments with smart (energy) technologies in 'real-life' settings, e.g. households, offices.

UNIVERSITEIT TWENTE.

INTEGRATED APPROACH FOR SMART CITIES

- The UT is working to develop:
 - Integrated frameworks and models;
 - That combine multidiciplinary (beta-gamma) insights;
 - That contribute to cities becoming more intelligent;
 - And hence, support strategies to cope with Grand Societal Challenges.
 - Thanks for your attention.